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Abstract: 
 
Simulation of accurate models for experimental systems is vital to determining future 
research and validating existing research. I will implement a model for a system of 
coupled nonlinear time-delayed feedback loops. The model for each independent loop 
will be a state-space representation of the loop in Kouomuo [1] and will be tested against 
published results for identical systems. Coupling schemes will be initially tested on well 
known and previously explored systems such as the Lorenz model [2]. The final 
implementation will be tested against published experimental data for such a system 
[3,4]. This will be then used to predict synchronization behavior for previously 
unexplored system parameters τ and φ as it relates to the coupling strength. Time 
permitting, the time required to achieve synchronization and its dependence on system 
parameters will be explored.  



Background 
 
For highly productive experimental research to be conducted it is important to explore 
reasonable paths of investigation. With the breadth of available topics and directions 
determining the most fruitful paths can be difficult. One solution to this is effective 
modeling and prediction of experimental behavior through computer simulations. One 
current field of research is the synchronization of nonlinear systems.  
 Of current interest are nonlinear systems that involve a time-delayed feedback. 
One such system explored in detail by Kouomuo [1] is comprised of a laser, Mach-
Zehnder inferometer, filtering, delay and amplification.  
(Diagram) 

Through basic mathematical relationships for each of these components one can 
form a model for the evolution of the system in terms of a time-delayed integro-
differential equation as defined in Kouomuo: 
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 Here x(t) is a dimensionless variable with parameters of the normalized feedback 
gain β, the normalized bias offset φ, the high cut-off filter time constant τ and the low cut-
off filter time constant θ. 

The generally established method for solving these equations would be 
traditional, numerical methods such as RK4. However, one can examine the initial 
situation and formulate these equations using a completely different approach (presented 
below). Having established a basic nonlinear system, we can now examine more 
complicated behavior.  

It has been observed both in natural systems and mathematical models that two 
nonlinear systems can achieve a synchronous state when coupled in an appropriate 
manner. Understanding such systems may lead to better communication techniques, 
advanced medical procedures and a significant improvement in understanding certain 
biological systems.  

With either formulation it is fairly easy to cast this in the form of many published 
pieces of work about coupling systems of nonlinear equations. What becomes interesting 
is examining the behavior of such coupled systems. In published work on the Lorenz 
system it has been demonstrated that two such coupled systems can be made to 
synchronize. This seems counter-intuitive to the concept of nonlinear (chaotic) systems 
and so has sparked a variety of research. Of specific relevance to this project is published 
experimental work which has demonstrated that given the correct setup it is possible to 
achieve synchronization between two Mach-Zehnder loops.  
   
Derivation of Alternative Model 
 The approach taken by Kouomuo was to model the filters using single-pole low-
pass and high-pass filters. An alternative approach is to formulate them in state-space. 
Then the filtering would look like: 
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 Here x(t) represents the input to a filter, y(t) is the output from the filter and A, B, 
C and D are constant matrices related to the filter used. Furthermore this can be easily 
converted to a discrete map equation. This is highly appropriate if one is considering a 
discrete-time filter such as might be implemented on a digital signal processing board. 
Since the current experimental setup related to this project has chosen to implement the 
system in this manner we will use the discrete versions as follows[5]: 

][][][
][][]1[

nDxnny
nxnn

+=
+=+

Cu
BAuu

 

 Now we must include the concept of feedback. The simplest approach would be 
just a direct feedback where x[n]=y[n]. This however does not actually allow any 
dynamics besides the filter response to occur. Therefore we also include some function 
applied to the output of the filter, thus you could imagine something like: 
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 Where we have included the fact that we are using time-delayed feedback as 
represented by the argument [n-k]. This gives rise to a state-space representation that 
looks like: 
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By carefully choosing our state-space to be the canonical form derived from the z-
transform of the discrete time filters we are interested in modeling, we can rewrite the top 
equation in terms of only the state-vector u, and generate our output at a later iteration via 
the simplified second equation. This gives us an iterative map in the following form: 
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 The final step in realizing what will be implemented is to actually introduce the 
function f(y[n]) from the system. In our case it is the exact same nonlinearity introduced 
in the Kouomuo paper, since it represented the modification and feedback of the output 
of the filter, just as our function does. So, the final equation we will model is: 
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 The main drawback to this approach for modeling the system is it requires 
knowledge of the matrices A, B, C and D related to the filter. There exists code to 
generate these matrices for some standard filter types and orders in Matlab, but any given 
high or low pass filter will not necessarily well conform to these standards. While it’s 
possible to buy high-caliber filters designed to specific functions, these are very 
expensive. An alternative approach is to implement digital filters, as mentioned before 
this is the approach taken in our current experiments. This allows the actual 
implementation of filters that precisely match the matrices generated (or to design a filter 
then generate the matrices that match it exactly). There exists some concern for the 
numerical stability of the matrices, but the code in Matlab asserts that these matrices are 
the most stable of available methods for generating filtering characteristics. Therefore we 
will largely ignore any concern for stability from this issue. A different issue could arise 
in the discretization of the continuous time system to a discrete time system, but since the 
discretization is already inherent in the system we seek to model it can be ignored on the 
surface. There may be some issue from the combination of both digital and analog system 
components, which will be addressed if there is time since it is largely hidden in the 
established and tested hardware design of the digital signal processing board.  



 The second concern is developing an effective method for coupling two of these 
systems. A bi-directional coupling of the Lorenz system might look like: 
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 This is considered diffusive coupling in the literature. This same technique can be 
applied to our state-space representation. If we take a step back and consider where we 
have both an input and output term (x[n] and y[n]), it would make logical sense to couple 
in the input terms. That is we will introduce coupling in the x[n] term. However, recall 
that we’ve replaced the x[n] term with our f(y[n-k]) term, so, our coupling would then 
look like: 
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Now we perform the same simplifications that we did earlier, as well as multiplying out 
the coupling term and recombining them giving us a simplified pair of equations: 
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This is the final set of equations we will implement to actually model a coupled set of 
Mach-Zehnder loops. 
 
Implementation 
 

Because the majority of published materials for this class of problems contain 
graphical representations and a primary experimental observation method is the display 
of time traces, it will be important to facilitate comparisons between simulation runs and 
this visual data. This suggests using a language or environment that incorporates an easily 
utilized graphical presentation component. Furthermore since I have chosen to implement 
a method dependant on matrix filtering constants, a language which has such code readily 
available or integrated for calculation of these coefficients would be preferred. To fulfill 
these requirements my primary implementation will be performed in Matlab with 
integrated C routines as needed for efficient calculations.  
 The largest predicted concern will be in comparison between published 
experimental results due to the quantization inherent in measurements. This quantization 
is not existent in the mathematical model without being explicitly included. Since there 
does exist characteristics that are dominant on scales significantly above the quantization 
error, for validation of the code I will be able to ignore this. Since we seek to have highly 
accurate comparison to experimental results however, should there prove time later in the 
project I will introduce quantization into the model to reflect this expected behavior.  
 
Validation 
 



The simulation develop will take part in three stages, each independently 
verifiable. The first will involve implementing a single loop model as developed above. 
This will be verified against published work by Kouomuo et al. [1] on such systems. 
Specifically I will look for characteristic behavior of the system at unique parameter 
settings. Four such characteristic curves are displayed below, with their corresponding 
system parameters.  

 
 

The second stage will be a separate implementation of a system of couple Lorenz 
models [2]. Again, characteristic behavior will be looked for. Using commonly studied 
parameters of the system (σ=10, r1=28.8, r2=28, b=8/3) I should be able to demonstrate 
identical synchronization as well as reproduce the results by Anishchenko et. al. [3]. 
 The final stage of implementation will be a combination of the previously 
mentioned models. To verify this I will compare against two sets of literature, Argyris et. 
al. [3] has published work where a set of oscillators coupled in an open loop 
configuration (γ=0 for system 1 and  γ= 1 for system 2) synchronize and exhibit unique 
behaviors. Further, in a slightly more complicated case Piel et al.  have demonstrated 
synchronization under very specific circumstances which involve bi-directional 
communication [4]. I will demonstrate synchronization under these specific conditions of 
γ=0.5, and conversely the lack of synchronization when these conditions are not met.  
 
Use of Code 
Once validation has occurred, this code can be utilized to predict new and interesting 
behavior. I will perform simulations where previously unexplored system parameters are 



examined. Specifically the work will generate empirical conditions for synchronization 
based on variations in time delay ( k ) and optical biasing  ( φ ) compared to the strength 
of system coupling ( γ ).  
 
Milestones: 
Implementation & Verification of individual simulations 
Implementation & Verification of final, combined simulation 
Generation of new results 
Expansion & further development of code 
 
Project Schedule 
Goal/Stage        Completion Date 
Implement and Validate Single Loop code    Nov. 1st 
Implement and Validate Coupled Lorenz code   1st week Nov. 
Implement and validate coupled MZ code    Dec 1st  
Mid-Year Progress Report      1st Week Dec. 
Generate Conditions for Time delay     Jan. 1st 
Generate Conditions for Optical Biasing    Jan. 1st 

Introduce Quantization and Noise in model    April 1st 
Draft Final Report and Presentation     2nd week April 
Further Expansion of Code      ???? 
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